Metabolic Pathways |
|
Structure |
|
IUPAC Name |
6-methylhept-5-en-2-one |
PubChem CID |
9862 |
Synonymous Names |
more
less
|
Formula |
C8H14O |
Molecular Weight |
126.2 |
Chemical Class |
Ketone, Aliphatic, Carbonyl, Organic oxide |
Reference Link |
- Goff, S. A., and Klee, H. J. 2006. Plant volatile compounds: sensory cues for health and nutritional value? Science. 311:815–9.
- Dobson, H. E. M., Bergström, J., Bergström, G., and Groth, I. 1987. Pollen and flower volatiles in two Rosa species. Phytochemistry. 26:3171–3173.
- Burger, B., Munro, Z., and Visser, J. 1988. Determination of Plant Volatiles 1:Analysis of the Insect-Attracting Allomone of the Parasitic Plant Hydnora africana Using Grob-Habich Activated Charcoal Traps. Journal of High Resolution Chromatography & Chrom
- Mauck, K. E., De Moraes, C. M., and Mescher, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences. 107:3600–3605.
- Gfeller, A., Laloux, M., Barsics, F., Kati, D. E., Haubruge, E., du Jardin, P., et al. 2013. Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol. 39:1129–39.
- Li, J., Di, T., and Bai, J. 2019. Distribution of Volatile Compounds in Different Fruit Structures in Four Tomato Cultivars. Molecules. 24.
- Cuevas, F. J., Moreno-Rojas, J. M., and Ruiz-Moreno, M. J. 2017. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem. 221:1930–193
- Najar-Rodriguez, A., Orschel, B., and Dorn, S. 2013. Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory. J Chem Ecol. 39:418–29.
- Vallat, A., Gu, H., and Dorn, S. 2005. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry. 66:1540–50.
- González-Mas, M. C., Rambla, J. L., López-Gresa, M. P., Blázquez, M. A., and Granell, A. 2019. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front Plant Sci. 10:12.
- Constantino, N., Oh, Y., Şennik, E., Andersen, B., Warden, M., Oralkan, Ö., et al. 2021. Soybean Cyst Nematodes Influence Aboveground Plant Volatile Signals Prior to Symptom Development. Front Plant Sci. 12:749014.
- Chamberlain, K., Briens, M., Jacobs, J. H., Clark, S. J., and Pickett, J. A. 2012. Use of honey bees (Apis mellifera L.) to detect the presence of Mediterranean fruit fly (Ceratitis capitata Wiedemann) larvae in Valencia oranges. J Sci Food Agric. 92:205
|
Plants/Microbial Species and Abiotic/Biotic Stimuli |
Plant/Microbial Species |
Abiotic/Biotic Stimuli |
Hydnora africana |
None |
Rosa rugosa (Japanese rose) |
None |
Hordeum vulgare (Barley) |
None |
Lycopersicon esculentum (Tomato) |
None |
Citrus sinensis (Sweet orange) |
None |
Prunus persica (Peach) |
None |
Malus domestica (Apple) |
None |
Glycine max (Soybean) |
Nematode - Heterodera glycines - Soybean Nematode Cyst |
Citrus sinensis (Sweet orange) |
Insect - Ceratitis capitata Wiedemann - Mediterranean Fruit Fly |
|
Confirmed/Hypothesized Functions |
|