Metabolic Pathways |
|
Structure |
|
IUPAC Name |
(3E)-3,7-dimethylocta-1,3,6-triene |
PubChem CID |
5281553 |
Synonymous Names |
more
less
|
Formula |
C10H16 |
Molecular Weight |
136.23 |
Chemical Class |
Terpenoid, Alkatriene, Aliphatic, Olefin, Prenol |
Reference Link |
- Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature. 406:512–5.
- Kessler, A., and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291:2141–4.
- Mauck, K. E., De Moraes, C. M., and Mescher, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences. 107:3600–3605.
- Pare, P. W., and Tumlinson, J. H. 1997. De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiol. 114:1161–1167.
- Degen, T., Dillmann, C., Marion-Poll, F., and Turlings, T. C. J. 2004. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 135:1928–38.
- Quintana-Rodriguez, E., Morales-Vargas, A. T., Molina-Torres, J., Ádame-Alvarez, R. M., Acosta-Gallegos, J. A., and Heil, M. 2015. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lin
- Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett. 10:490–
- Dobson, H. E. M., Bergström, J., Bergström, G., and Groth, I. 1987. Pollen and flower volatiles in two Rosa species. Phytochemistry. 26:3171–3173.
- Copolovici, L., Kännaste, A., Remmel, T., Vislap, V., and Niinemets, Ü. 2011. Volatile Emissions from Alnus glutionosa Induced by Herbivory are Quantitatively Related to the Extent of Damage. J Chem Ecol. 37:18–28.
- Bergstrom, G., Birgersson, G., Groth, I., and Anders Nilsson, L. 1992. Floral fragrance disparity between three taxa of lady’s slipper Cypripedium calceolus (orchidaceae). Phytochemistry. 31:2315–2319.
- Buttery, R. G., Kamm, J. A., and Ling, L. C. 1984. Volatile components of red clover leaves, flowers, and seed pods: possible insect attractants. J Agric Food Chem. 32:254–256. wers, and seed pods: possible insect attractants
- Buttery, R. G., Kamm, J. A., and Ling, L. C. 1982. Volatile components of alfalfa flowers and pods. J Agric Food Chem. 30:739–742.
- Huang, J., Cardoza, Y. J., Schmelz, E. A., Raina, R., Engelberth, J., and Tumlinson, J. H. 2003. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta. 217:767–75.
- De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 410:577–80.
- Loughrin, J. H., Hamilton-Kemp, T. R., Andersen, R. A., and Hildebrand, D. F. 1990. Headspace compounds from flowers of Nicotiana tabacum and related species. J Agric Food Chem. 38:455–460.
- Hamilton-Kemp, T. R., Loughrin, J. H., and Andersen, R. A. 1990. Identification of some volatile compounds from strawberry flowers. Phytochemistry. 29:2847–2848.
- Suckling, D. M., Twidle, A. M., Gibb, A. R., Manning, L. M., Mitchell, V. J., Sullivan, T. E. S., et al. 2012. Volatiles from apple trees infested with light brown apple moth larvae attract the parasitoid Dolichogenidia tasmanica. J Agric Food Chem. 60:9
- Chen, P., Dai, C., Liu, H., and Hou, M. 2022. Identification of Key Headspace Volatile Compounds Signaling Preference for Rice over Corn in Adult Females of the Rice Leaf Folder Cnaphalocrocis medinalis. J Agric Food Chem. 70:9826–9833.
- Giacomuzzi, V., Cappellin, L., Khomenko, I., Biasioli, F., Schütz, S., Tasin, M., et al. 2016. Emission of Volatile Compounds from Apple Plants Infested with Pandemis heparana Larvae, Antennal Response of Conspecific Adults, and Preliminary Field Trial.
- Najar-Rodriguez, A., Orschel, B., and Dorn, S. 2013. Season-long volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory. J Chem Ecol. 39:418–29.
- Ángeles López, Y. I., Martínez-Gallardo, N. A., Ramírez-Romero, R., López, M. G., Sánchez-Hernández, C., and Délano-Frier, J. P. 2012. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum)
- Vallat, A., Gu, H., and Dorn, S. 2005. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry. 66:1540–50.
- Michereff, M. F. F., Laumann, R. A., Borges, M., Michereff-Filho, M., Diniz, I. R., Neto, A. L. F., et al. 2011. Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars. J Chem Ecol. 37:273–85.
- González-Mas, M. C., Rambla, J. L., López-Gresa, M. P., Blázquez, M. A., and Granell, A. 2019. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front Plant Sci. 10:12.
- Hijaz, F., El-Shesheny, I., and Killiny, N. 2013. Herbivory by the insect diaphorina citri induces greater change in citrus plant volatile profile than does infection by the bacterium, Candidatus Liberibacter asiaticus. Plant Signal Behav. 8:doi: 10.4161
- Alsabte, A., Ahmed, Q. H., Kayahan, A., and Karaca, İ. 2022. Effects of Volatile Organic Compounds (VOCs) emitted by citrus infested with Aonidiella aurantii on the predator Rhyzobius lophanthae attraction. Phytoparasitica. 50:645–653.
- Chamberlain, K., Briens, M., Jacobs, J. H., Clark, S. J., and Pickett, J. A. 2012. Use of honey bees (Apis mellifera L.) to detect the presence of Mediterranean fruit fly (Ceratitis capitata Wiedemann) larvae in Valencia oranges. J Sci Food Agric. 92:205
- da Cruz, M. A., Plotto, A., Ferrarezi, R. S., Leite Junior, R. P., and Bai, J. 2023. Effect of Huanglongbing on the Volatile Organic Compound Profile of Fruit Juice and Peel Oil in “Ray Ruby” Grapefruit. Foods. 12.
- Ahmed, Q., Aljuboory, A. B., and Alsabte, A. 2022. The Response of Bitter Orange Citrus Aurantium Trees to the Infestation of Oriental Yellow Scale Aonidiella Orientalis in Iraq. IOP Conf Ser Earth Environ Sci. 1060:012092.
- Staudt, M., Jackson, B., El-Aouni, H., Buatois, B., Lacroze, J.-P., Poëssel, J.-L., et al. 2010. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Phys
|
Plants/Microbial Species and Abiotic/Biotic Stimuli |
|
Confirmed/Hypothesized Functions |
|